Melatonin-Mediated Intracellular Insulin during 2-Deoxy-d-glucose Treatment Is Reduced through Autophagy and EDC3 Protein in Insulinoma INS-1E Cells

نویسندگان

  • Han Sung Kim
  • Tae-Young Han
  • Yeong-Min Yoo
چکیده

2-DG triggers glucose deprivation without altering other nutrients or metabolic pathways and then activates autophagy via activation of AMPK and endoplasmic reticulum (ER) stress. We investigated whether 2-DG reduced intracellular insulin increased by melatonin via autophagy/EDC3 in insulinoma INS-1E cells. p-AMPK and GRP78/BiP level were significantly increased by 2-DG in the presence/absence of melatonin, but IRE1α level was reduced in 2-DG treatment. Levels of p85α, p110, p-Akt (Ser473, Thr308), and p-mTOR (Ser2481) were also significantly reduced by 2-DG in the presence/absence of melatonin. Mn-SOD increased with 2-DG plus melatonin compared to groups treated with/without melatonin alone. Bcl-2 was decreased and Bax increased with 2-DG plus melatonin. LC3II level increased with 2-DG treatment in the presence/absence of melatonin. Intracellular insulin production increased in melatonin plus 2-DG but reduced in treatment with 2-DG with/without melatonin. EDC3 was increased by 2-DG in the presence/absence of melatonin. Rapamycin, an mTOR inhibitor, increased GRP78/BiP and EDC3 levels in a dose-dependent manner and subsequently resulted in a decrease in intracellular production of insulin. These results suggest that melatonin-mediated insulin synthesis during 2-DG treatment involves autophagy and EDC3 protein in rat insulinoma INS-1E cells and subsequently results in a decrease in intracellular production of insulin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data of intracellular insulin protein reduced by autophagy in INS-1E cells

Autophagy appears to be involved in maintaining normal intracellular insulin content by accelerating the insulin degradation rate in β-cells (Marsh et al., 2007) [1]. 2-deoxy-d-glucose (2-DG) is metabolized by hexokinase, and acts as an inhibitor of glycolysis. 2-DG triggers glucose deprivation without altering other nutrients or metabolic pathways (Aghaee et al., 2012) [2], and appears to be a...

متن کامل

Suppression of the Nuclear Factor Eny2 Increases Insulin Secretion in Poorly Functioning INS-1E Insulinoma Cells

Eny2, the mammalian ortholog of yeast Sus1 and drosophila E(y)2, is a nuclear factor that participates in several steps of gene transcription and in mRNA export. We had previously found that Eny2 expression changes in mouse pancreatic islets during the metabolic adaptation to pregnancy. We therefore hypothesized that the protein contributes to the regulation of islet endocrine cell function and...

متن کامل

Mitochondrial uncoupling protein-2 is not involved in palmitate-induced impairment of glucose-stimulated insulin secretion in INS-1E insulinoma cells and is not needed for the amplification of insulin release

We have recently shown that overnight exposure of INS-1E insulinoma cells to palmitate in the presence of high glucose causes defects in both mitochondrial energy metabolism and glucose-stimulated insulin secretion (GSIS). Here we report experiments designed to test the involvement of mitochondrial uncoupling protein-2 (UCP2) in these glucolipotoxic effects. Measuring real-time oxygen consumpti...

متن کامل

Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species

Glucose-stimulated insulin secretion (GSIS) by pancreatic β cells is regulated by mitochondrial uncoupling protein-2 (UCP2), but opposing phenotypes, GSIS improvement and impairment, have been reported for different Ucp2-ablated mouse models. By measuring mitochondrial bioenergetics in attached INS-1E insulinoma cells with and without UCP2, we show that UCP2 contributes to proton leak and atten...

متن کامل

Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion.

Proton leak exerts stronger control over ATP/ADP in mitochondria from clonal pancreatic beta-cells (INS-1E) than in those from rat skeletal muscle, due to the higher proton conductance of INS-1E mitochondria [Affourtit and Brand (2006) Biochem. J. 393, 151-159]. In the present study, we demonstrate that high proton leak manifests itself at the cellular level too: the leak rate (measured as myxo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016